
May 1988 VlatIL(. 6V UILU-ENG-88-22 19

COORDINATED SCIENCE LABORATORY
College of Engineering

AD-A197 549

SUBSTRUCTURE
DISCOVERY
OF
MACRO-OPERATORS

Bradley L. Whitehall DTIC
ELECTE f
JUL 13 19883

CKH
)

88 7 13 0O02

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

b-NCLSSIFIED
sECUrY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAi-
Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None
Za. SECURITY CLASSIFICAniON AUTHORITY " 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
Zb. OECLAZSIFICAT1ONJDOWNGRADING SO.4EDUL[distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMSER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-88-2219

6a. NAME OF PER-FORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Coordinated Science Lab Of appl cable)

University of Illinois N/A NSF, ONR, DARPA

6. AODRESS (City a, nd ZjPCod) 7b AORESS(Cw, Sty ,ind u)
180 g.Street, washington D.C. 20552

1101 W. Springfield Avenue
800 N. Quincy, Arlington, VA 22202

Urbana, IL 61801 1400 Wilson Boulevard, Arlington, VA22209-2301

S&. NAME OF FUNDING iSPONSORING T8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (f appibe) NSF IST-85- 170, N00014-82-K-OI86

NSF, 0NR, DARPA N N00014-87-K-0874

S. ADDRESS (Cty, Statt, and ZIPCode) .SOURCE OF FUNDING NUMBERS

1800 G. Street, Washington, D.,C. 20552 PROGRAM PROJECT TASK WORK UNIT

800 N. Quincy, Arlington, VA 22202 ELEMENT NO. NO. NO. ON NO.

1400 Wilson Boulevard, Arlineton VA 22209-2308

11. TITLE (Include S&CW"t Cauificaan)

Substructure Discovery of Macro-Operators

12. PERSONAL, AUTHOR(S)
Whitehall, Bradley L.

13a. TYPE OF REPORT 13b. TIME COVERED 14. QAT OFRPRMayroda) S P O
T1echnicalFRMT

16. SUPPLEMENTARY NOTATION

17. COSATI CODES I. SUBJECT TERMS (Conainru on tvern it Aecsuawy and kmfy by block mnmoer)

FIELD GROUP SUB-GROUP vaut Oepi e - farnceratars Back round
Sub ~ Y ~ i ecp aseaiearlini, conceptual

clust-ering

9. ABSTRACT (C.: This paper describes an implemented system. PLAND, for discovering substructures in
observed action sequences. The goal is to show how a system can learn useful macro-operators by
observing a task being performed. An intelligent robot using this system could learn how to
perform new tasks by watching tasks being performed by someone else. even if the robot does not
possess a complete understanding of the actions being observed.

Macro-operators are discovered within a specific context that provides the types of
generalizations allowed in the discovery process and uses the previously proposed macro-operators
to build new ones. Background knowledge is used to determine which generalizations are
appropriate and to control search. The system can discover syntactic structures (grammars)
without background knowledge. but more meaningful and useful structures are discovered when
background knowledge is incorporated into the process.

The foundations of PLAND are in similarity-difference-based (SDBL) learning systems that
perform conceptual clustering; however unlike most SDBL systems. a large amount of background
knowledge can be incorporated to improve learning effectiveness.

20. DISTRIBUTION I AVAJLABIUTY OF ABSTRACT I ftAII W,.JI I T LLA 5IFICA IoN
MUNC-ASSIFIEOIUNLIMITEO C SAME AS RPT. [3 OTC USERS Unclassified

22a. NAME OF RESPONSIBLE INOIVIDUAL 22b. TELEPHONE Ondwd u Area Code) I22C. OFFICE SYMBOL

O0 FORM 1473. &4 Mi 3 -w A edition may 00 use"d untl exhausd e. SECURITY CLASSIFICATION OF THIS PAGE '
All other edition$ are Obsolete.

U11CASSFIE

Substructure Discovery of Macro-Operators*

Bradley L. Whitehall

Artificial Intelligence Research Group
Coordinated Science Laboratory

'University of Illinois at Urbana-Champaign
1101 West Springfield Avenue

Urbana, IL 61801

Telephone: (217) 244-1947
Arpanet: whitehal%uicsl@uxc.cso.uiuc.edu

March 1988

* ABSTRACTf

..

_/This paper describes an implemented system, PLAND/ for discovering substructures in
observed action sequences. The goal is to show how a system can learn useful macro-operators by
observing a task being performed. An intelligent robot using this system could learn how to "
perform new tasks by watching tasks being performed by someone else, even if the robot does not
possess a complete understanding of the actions being observed.

Macro-operators are discovered within a specific context that provides the types of
generalizations allowed in the discovery process and uses the previously proposed macro-operators
to build new ones. Background knowledge is used to determine which generalizations are
appropriate and to control search. The system can discover syntactic structures (grammars)
without background knowledge, but more meaningful and useful structures are discovered when
background knowledge is incorporated into the process.

The foundations of PLAND are in similarity-difference-based (SDBL) learning systems that
perform conceptual clustering; however unlike most SDBL systems. a large amount of background
knowledge can be incorporated to improve learning effectiveness. (k< g)

r,.

* This research was partially supported by the National Science Foundation under grant NSF IST-8S-I1170, the Ofhceof Naval Research under gaat N00014-82-K-0186, by the Defense Advanced Research Projects Agency under grant

N00014-87-K-0874, and by a gift from Texas Instruments, Inc.

A. I U I i !l I

1. INTRODUCTION

The goal of .the research presented in this paper is to discover (plausible)
structures in observed action sequences. Specifically, the PLAND (PLAN
Discovery) system discovers macro-operators (macrops) of action subsequences by
searching for interesting substructures in observed action traces. By constructing
a hierarchical representation from the flat (linear) structure of actions observed,
the system gains insight into the interconnections of the actions and how these
sequences could be used in future problem solving. This system learns in the
same method an apprentice learns from a master craftsman - by observing skill

in action.

The work described in this paper differs from previous work in macro-
operator construction in two important areas. Unlike [Andreae84] and
[Minton85], PLAND discovers macrops from observation and does not use
examples to learn the new structures . The another difference is that PLAND does
not use a problem solver to determine what the macrops for a task should be (as is
done in STRIPS [Fikes72]) or have a complete theory of the task domain that may
be used to explain the observation as done in EBL systems [DeJong86, Mitchell86].
PLAND does take advantage of domain specific background knowledge when
possible, but it is not required to understand the observed actions. PLAND does
not have a complete description of the problem goal or (necessarily) an
understanding of the individual actions given as observations. This system is not
a problem solver that stores the solutions to achieved goals. Rather, PLAND is a
passive observer that induces the structure of the events it sees.

The next section of the paper describes how macro-operators can be viewed as
substructures along with some background on substructure discovery. The third
section presents an overview of the PLAND system with the aid of an example.
The fourth section describes the discovery process used for detecting loops and
conditionals. This is followed by a demonstration of the system.

2. SUBSTRUCTURE DISCOVERY

A brief description of substructures and substructure discovery is presented
in this section; for more detail see [Whitehall87] and [Holder88]. A substructure is
defined as a collection of relations and the nodes associated with those relations.
The nodes and relations constitute a connected portion of the structure within a
complete event. All the nodes are connected by relations in the graph theoretic .

sense where the nodes are vertices and the relations are edges. .i/or

I

-2-

Discovering structure within given input events requires the use of part-to-

whole generalization [Dietterich86]. In other words, from the pieces the system
sees it explores how the complete event is best described. There are two types of
structure being found by the PLAND system. The linear structure of actions is
composed into macrops. There is also the hierarchical structure of the macrops
that can be used to break the task into manageable chunks. These chunks can be
used to recognize the hierarchy of goals of the problem solver. The system works
at discovering the first kind of structure, macrops, but the hierarchical structure is
a byproduct of allowing macrops to internalize other macrops.

Structure in this system is the relationship between actions used to
accomplish the plan. Logical groupings of actions that perform a definable unit of
work are assembled into macro-operators. A single macro-operator is a sequence
of actions that are structurally linked by the order in which they are performed, a
totally ordered subset of plan steps. The nodes of this structure are the actions.
The one type of relation between the input actions is follows.

3. OVERVIEW OF PLAND SYSTEM

The goal of the PLAND system is to discover macrops from a given trace of
primitive actions. The system uses background knowledge to help guide the quest
for macrops. Unlike the macro-operators of other systems [Fikes72, Minton85],
macrops for this system are not generalized by changing constants to variables and
determining all of the preconditions for the execiftion of the macrop. The PLAND
system is concerned with discovering possible macrops that are known to
accomplish some task in the given execution trace, but whose general applicability
is as yet unknown. Macro-operators discovered by the system could be passed to
an explanation-based learning (EBL) system [DeJong86, Mitchell86] to determine
an explanation based evaluation of the macrop's usefulness and to be further
generalized. Having PLAND propose discovered macrops to an EBL system means
that the system is deriving proofs only for macrops that have some empirical
support.

PLAND is based upon similarity-difference-based learning (SDBL') systems
[Hayes-Roth78, Hoff83, Stepp84, Vere78J. As with all similarity-difference-based
systems it does not try to prove the validity of the discovered macrops. There is a

I Similaritv-difference-based learning is the same as what was previously referred to as similarity-based learning S
L SBL). However, these systems do not !earn by observing only similarities. The differences between events also play an
important role.

'W' ,W e.' /' , e,, 3 ; ¢. . ¢ ;. ;.y¢; . _ . _ - . .. _

-3-

leap of faith in the generalization done in the discovery process. For example, it is

possible for the system to classify an anomaly as a macrop. But in order for this

to happen under typical heuristic biases, the anomaly would need to occur many

times. In such a case one must question how irregular the observed actions really

are.

The PLAND system takes a single sequence of observed actions as input.

From this stream of actions it must discover logical units that can reduce the

complexity of the trace. This is similar to the NODDY system of Andreae

[Andreae84], but that system is given examples of a single iteration through the
body of a loop from which it can learn conditionals and the loop structure.

PLAND must itself break the action sequence into examples and work with those

chunks to discover macrops. This complicates the problem because one is never
sure that one is working with correct "examples". Wolff's SNPR system [Wolff 82]
for discovering grammars performs some of the functions of PLAND. The main

differences being that PLAND discovers loops explicitly where SNPR does not, and

that SNPR does not incorporate knowledge to allow actions to have associated -

attributes, a feature that aids the discovery process.

3.1. Types of Macrops Discovered

Three types of macrops are discovered by the PLAND system: sequences,

loops, and conditionals.

* Sequences
The most basic macrop is a simple sequence of steps. A sequence is a block
of actions that have been used in many places in the input trace. Actions in

a sequence have not occurred consecutively enough times to be considered a
loop.

" Loops
Loops are defined as sequences that appear juxtaposed for at least a

minimum number (a parameter) of iterations. In the normal meaning of
the word, loops have test conditions to stop their execution. PLAND does

not determine what those stopping criteria are but learns only the sequence

of actions that compose the body of the loop. Learning the exit conditions
for a looping construct requires a system like BAGGER [Shavlik87a,

Shavlik87b] because exit conditions are reflected in the state of the system
but not in the actions performed. As an example, consider an input string

of ABCDCDCDEFCDCD, from which the loop macrop, using formal

-4-

grammar syntax, (CD)* is discovered. The string can now be described as

being generated by AB(CD)*EF(CD)*.

0 Conditionals

The third type of macrop found is conditionals. A conditional allows a

choice of actions for some particular point in time. PLAND defines

conditionals as macrops that have more than one choice point within them.
A particular choice point is not limited to just two alternatives. For

example, if given ABCADCAECABCADC the system discovers the macrop
(A(B+D+E)C)*. In a manner analogous to loops, the situations that cause a
specific branch of a choice point to be performed are not learned.

These are the three types of macro-operators that the system can discover. By
nesting previously discovered macrops within other macro-operators the system is
able to discover complex relationships between different macrops and build up a
hierarchical structure of an observed sequence of actions. The code to discover 0

these constructs is a major portion of the knowledge built into the system.

Additional heuristics and generalizations done by the system are supplied by
background knowledge.

S

3.2. Top Level Organization

The system works on multiple levels of generalization called contexts. A
context contains all the information needed to process a set of actions for a given
level of abstraction. This includes the input sequence of actions, the previously
discovered macrops, agendas, and information about how macrops overlap and
subsume each other. The system can proceed to a more abstract level by creating a
new context in which the actions are generalized. The actions can be generalized
by replacing groups of actions with macrops or by the use of a fuzzy matching 0

algorithm.

The system can change the level it is working on by replacing the current U
context. This flexibility is useful if the system is unsure which level of
generalization is appropriate for the problem. The system can work on one context

for a specified amount of time, then swap contexts and work on a different one.

A second top level data structure is an agenda. An agenda indicates where to
look for new macrops in the given example. There are many agendas competing
for processor time, and a simple agenda control system manages their priorities.

An agenda contains information on where in the action sequence the search for a 6%,

macrop is to begin. The previously found macrops that can be used in building up

-5-

the current macrop are specified in the agenda. The type of macrop wanted is

indicated, either a loop or a conditional. Searching directly for sequence macrops

is not done, but information regarding a possible sequence macrop is updated

whenever a new macrop is discovered. Agendas compete only with other agendas

of the same context.

3.3. Use of Background Knowledge

The Al community has recognized that in order to learn substantive concepts

a system must possess knowledge about the domain [Schank86, Winston84]. Some ,
SDBL systems, e.g., [Fisher87, Hoff83, Langley86, Stepp84], have not used S

background knowledge in a flexible manner to guide the learning process, but

rather have used knowledge to control the types of generalizations allowed.

Recently, researchers have incorporated more background knowledge into the

systems to help with the discovery process [Lebowitz86, Mogensen87, Stepp86].

PLAND continues this trend. This section describes the multiple ways in which

domain specific knowledge is used by the system.

Observed trace of actions working with:

(WAKE-UP) (EAT 1) (GOTO GYM 1) (GOTO WORK1) (GOTO HOME1) S

(EAT 2) (GOTO BED) (WAKE-UP) (EAT 1) (GOTO WORK 2) (GOTO GYM 2)

(GOTO HOME2) (EAT 3) (GOTO BED) (WAKE-UP) (EAT) (GOTO GYM 1)

(GOTO WORK 3) (GOTO HOME 1) (EAT 4) (GOTO BED) (WAKE-UP) (GET-SNACK)

(GOTO BED) (WAKE-UP) (EAT 1) (GOTO WORK 2) (GOTO GYM 2)

(GOTO HOME 3) (EAT 2) (GOTO BED) (WAKE-UP) (EAT) (GOTO GYM)
(GOTO WORK) (GOTO HOME) (EAT S) (GOTO BED) (SLEEP WALK)

Ready to start another cycle. The result of the last context was:

CONTEXT 1
cogsav name macrops

28.0 M1 < WAKE-UP EAT (GOTO-GYM + 0) GOTO-WORK (GOTO-GYM + 0) GOTO-HOME EAT k:' .

GOTO-BED >

Observed trace of actions working with:

[M1] (WAKE-UP) (GET-SNACK) (GOTO BED) [M1] (SLEEP WALK)
All interesting macrops were discovered. This example is finished.

Figure 1: Student Example

- .%I@

-6- 4-0

To help explain the use of background knowledge in the system, a simple
example is presented. The system is capable of dealing with far more complex
examples. Background knowledge is expressed by rules and the system does
backward chaining through the rules to obtain an answer to a query about the
current processing. For this simple example the input (as shown in figure 1)

consists of a week's worth of actions performed by a hypothetical graduate
student. The goal of the system is to discover a macrop that will define a typical
day in the life of this student. The background knowledge specifies that going to
the gym is optional and that a day must start by waking up in the morning, end
by going to bed, and a student must also get some work done during the day. A
conceptual version of the rule for the constraints on the desired macrop is given in
figure 2, where MATCH is a function that makes use of a fuzzy matching
algorithm to determine whether two actions are equivalent.

MATCH does not require that two actions be "EQ" equal. The fuzzy matcher
will enable predefined patterns to determine how a match for particular items
may occur. Simple things such as allowing numeric values to fall within a range,
ignoring parts of an action, and forcing strict equivalence are built in to the
matching routines. More complex matching, such as traversing defined ISA links
for actions, can be specified by defining LISP code. SOME-ACTION just checks
that the first argument MATCHes at least one action in the second argument (a
macrop).

Although simple names or letters are used for actions here, it should be clear
that exact syntactic matches are not required. Thus a loop indicated by X* could
actually represent a loop where an occurrence is a list of actions from the set {Xi,

" X 3, ... ,X } where each X, is a known way to achieve X. Xi need not be a

primitive action, but could be a macrop that describes very complex actions whose 0

IF (AND (MACROP-STRUCTURE ?x)
(MATCH (FIRST-ACTION ?x) '(WAKE-UP))
(MATCH (LAST-ACTION ?x) "(GOTO ?y))
(MATCH ?y 'BED)
(SOME-ACTION *(WORK) ?x))

THEN
(VALID-MACROP ?x)

Figure 2: Background Knowledge Rule

A.

-7- 0

result is known. For example, in figure 1 there are many ways a student can eat: *.1

fix a bowl of cereal, grab some fast food, fix a meal at home, etc., thus the reason

for different subscripts.

In the example, PLAND finds a macrop for the student which is wake up,

optionally go to the gym, work, optionally go to the gym, head home, eat, and go to

bed. Although the output of the system in figure 1 makes the problem look simple,

it was not solvable without the domain knowledge in figure 22.

PLAND uses background knowledge in three distinct ways. At the highest

level, the background knowledge acts as meta-knowledge. The system works on
levels of generalization called contexts. The system queries the knowledge base to
determine what should be the current working context. The current context is

retained if there are good opportunities for discovering new macrops within it. If
a different context is suggested, the knowledge base returns the new context to be
used. At this level, the knowledge is used to control the level of generalization of
the action steps. Thus the system can process the input at a higher level of

abstraction after some macrops have been found. If the search at the higher level
is fruitless then the system can return to the more detailed level. This is a

powerful problem solving mechanism because it allows the system to pursue
many possible goals. If the system discovers a macrop that indicates a certain

environment is present, then it can create a context that generalizes some of these
actions to help confirm that notion. This type of hypothesis formation is rare in

SDBL systems.

When the top level decides to change contexts, background knowledge is

consulted as to what type of generalizations should be performed on the actions
(via the fuzzy matcher) of the current context. Consultation with the background

knowledge in this fashion allows the system to discover macrops that would be
impossible to discover otherwise. A system without knowledge specific to the

domain could not make logical guesses at which of the many possible

generalizations has meaning to the problem at hand.

For the example given earlier, no such knowledge exists. But for more

complex problems the actions could be interpreted in numerous ways. Knowledge
of these different interpretations would allow the creation of multiple contexts

2 Due to the amount of regulari* in the example, a large number of macrops were created. The h6idling of these

macrops slows the discovery process. The simple condition of forcing days to start by waking up and end by going to bed is

enough to prune the number of poss;bie macrops so that *,he system can function. This example shows that the addition of
simple knowledge can great.l impr3ve the prospects of discovering the correct soluiion.

i ~& R ~ 5
W r~~'~U' \~ ,

where the type of matches allowed for the actions was different. The system
could then let each context run a few selected agendas and continue with the 0

context that had found the best macrops (as measured by cognitive savings or
other heuristic criteria).

The background knowledge used at the intermediate level helps direct the
searching process for the macrops through agenda control. Before any agenda is
given control, the background knowledge is queried to approve the agenda's
applicability. If the knowledge indicates that macrops are not to be searched
beyond a certain point in the input sequence, then those agendas can be pruned.
Information contained in the agenda could signify that the agenda should not be
performed. The knowledge used in this method can save substantial amounts of
processing and significantly prune the search tree.

If the system had a large number of actions it observed while the student was
sleeping, such as snoring, rolling over, etc., then knowledge could eliminate
searching this area. For example, a rule might reject an agenda entry for finding
loops that start in a position between an action of going to bed and waking up.

At the lowest level, backgroun'. knowledge is used to control the macrops
allowed by the system. After finding the sequence of actions for a macro-

*operator, a query to background knowledge determines if the new sequence meets
any simple criteria expressed for macrops. With simple rules for checking macrop
sequences, like the rule presented in figure 2, the system is able to eliminate the
generation of useless macrops. This saves storage and time. Knowledge at the
lowest level can rid the system of macrops having low utility. Although this
seems trivial, this level of control determines whether a system finds a solution or
runs out of space and/or time. Control like this is missing in many SDBL
systems. Those systems can only make guesses at what is useful, much as this
system does when no background knowledge is present. The implication that
nothing valid can be done without background knowledge is not intended. In fact
this system can find useful results even when no knowledge is given. In these
cases the system acts like a finite state machine builder. The input is like a string
where the actions are the letters of the string. Then the discovered macrops act as
formal grammars defining portions of the input string and together constitute a
generalized regular grammar that can generate the input and other "similar"
strings. 2

0

3.4. Cognitive Savings %,A

The utility of a discovered macro-operator is measured by cognitive savings. 0

PLAND uses the cognitive savings values to determine which of two substructures

has the best potential for extension and applicability. The intent of this value is

to capture the mental savings one gains by working with the substructure instead

of the primitive actions that compose it. A simple formula for cognitive savings is

(number of structure occurrences - 1) * size of structure

where size of structure can be defined as number of nodes, number of relations, or

some other formula using the components of the structure. This formula

incorporates components of Wolff's compression principles [Wolff 82]. A macrop

that can chunk a large number of primitive actions and occurs many times is very

useful. There is a trade off when a macrop expansion causes some prior

occurrences to cease to be covered. The exact threshold for this cut off point is
domain dependent.

4. MACROP DISCOVERY DETAILS

There is only room here to describe at the highest level how loops and

conditionals are discovered. Detail of the processes is explained in [Whitehall87].

The most basic concept underlying loop macrop discovery is if a sequence

occurs many times, with one occurrence following the other, then reduce the

sequence. This is a simple concept that has been used before to reduce given :. 2.

sequences [Restle70, Simon63]. But even this simple concept is difficult to

implement in practice. Finding answers to simple questions can explode in

exponential time when the examples are not explicitly given. Such questions as
"where does the loop body begin?," "how long is the sequence of the body of the

loop?," and "does the action that begins the loop also occur within the loop body

(thus not always indicating a new iteration)?" are difficult questions to answer.
The loop discovery module in PLAND expects parameters in the agenda to guide %
the search for answers to these questions.

This section describes in a schematic way the algorithm used for loop

discovery. A list is created that has the positions in the input sequence for a

particular action type. Consecutive occurrences of the action indicate the '

(possible) start of a new loop iteration . The actions between two possible

iterations are added incrementally. As long as the sequence generated thus far

3 Action occur:ences r "av be skippee ,o allow :he tsT action of a 'crp to be used various lirnes -ithn the loop body.

94

%.

-10-

does not completely describe the actions between two starting positions of the

proposed loop then the sequence is extended (grown). The sequence is grown by

all possible macrops and single actions. This does not explode, as there is a fixed

number of macrops which are usable (as defined by the agenda), and each iteration

of the proposed loop body acts as a constraint on what is allowed.

The discovery of conditionals is more complex than the discovery of loops.

The problem with discovering conditionals is that anything could be made

optional. In the extreme case a sequence could be described by a loop of length one
with the body consisting of a single conditional for all possible actions. The

algorithm used by PLAND avoids this pitfall by requiring that all conditionals

have a base or key point that cannot be part of a choice set. The basic principle in
discovering conditionals is find actions that occur on fixed intervals, then make

conditionals out of what lies between these key points.

The first step in the discovery of conditionals is to build a difference array.

The difference computed is the number of actions between two sequential
occurrences of an action type. Next an array is built which indicates the number

of consecutive differences of equal spacing for each difference array. This is done
so that in the next step the action with the largest number of iterations (key

action) can be found. From the explanation thus far, it should be clear that the

conditionals discovered must be part of a loop. It is the repetition of actions at a

fixed distance from each other in the sequence that allows the conditionals to be
discovered. The actions do not have to be a fixed distance from each other in the

primitive version of the observed trace. But they mur be a fixed "action" distance

apart which means a variable length macrop (such as a loop) could be used in the

conditional. Filling in the actions around the key is the fourth step. This is where

the actual choice sets get constructed. The last step of the algorithm is to convert

the best descriptions of the conditional into macrop structures and find the other

occurrences of the conditional. If there are ties for the best conditional then all of
them are returned.

5. ANOTHER EXAMPLE

The example, whose run is shown in figure 3, demonstrates that conditionals

may be found with embedded macrops. The system can discover conditionals and

loops nested to an arbitrary depth. For brevity of presentation no background

knowledge was incorporated in this example and the actions are letters. When no

background knowledge is used the system finds regular expressions that define

A ,1.'-
,. ,... . ,.J . -,_- ,, , .-- ,-" " : -" ."";' '-', ."". .'-. .;-'.v.' ;. . -','.' .'- -. '.%,', .",' ." 'v.. ;2,'k .a',.'-'' ,';J "2' ., .' '

Observed trace of actions working with:

(X) (X) (-X) (X) (A) (X) (X) (X) (A) (B) (A) (X) (X) (A) (B) (A) (B) (A)

Ready to start another cycle. The result of the last context was:

CONTEXT1

cogsav name macrops

10.0 M1 <((X + B) A)*>

8.0 M2 < (X)*>
15.0 M3 <(([M2]* + B) A)*>

5.0 M6 <([M1]* X X)*>
I -

5.5 M7 <(A [M21* A B)*>

10.0 M10 <(X [Mi]*)*>

Observed trace of actions working with:

[M3]
All interesting macrops were discovered. This example is finished.

Figure 3: Example Output

chunks of the input string. The first macrop found by the system, M1, is a

conditional but it does not yet have the embedded loop macro. This is becausc the

loop macrop for A* has not been discovered at this point; it is discovered n-ct.

Now the system finds the better conditional, M3, which expresses the complote

string, ((A* -+ B) A)*. The system continues to find other macrops which are le s

interesting as indicated by the cognitive savings value. Notice that the macrop

numbers are not sequential. Nonsequential macrop numbers indicate the system

has discovered macrops that are subsumed by previously defined macrops. The

subsumed macrops are noted and not used further by the system.

6. CONCLUSION

The PLAND system demonstrates substructure discovery is useful for finding

macro-overators. Substructure discovery allows a system to learn more complex

relationships than are possible with attribute only systems. The hierarchical

structure of an observed sequence of actions can be constructed without complete

background knowledge or explicitly stated examples. Background knowledge can

be incorporated to allow the system to discover more appropriate macro-operators S

with oeses effosot.
with less effort.

'

-12-

PLAND is not a grammar induction system. It is able to induce grammars to
define the observed sequences but it goes far beyond capabilities of such systems.
It is more powerful because it discovers loops explicitly and uses background
knowledge in combination with the fuzzy matcher to allow the system to discover
more than just syntactic structures.

The system is novel in the area of macro-operator processing because it does
not perform problem solving and store the results. The system discovers the
macro-operators by passively observing the actions of another agent performing a
task and inducing the structure of the macrops.

0
7. ACKNOWLEDGMENTS

This work benefited from discussions with Robert Stepp, Larry Holder, Bob
Reinke, Bharat Rao, and Diane Cook.

R -I

,N

1 "-'?

lop

I , .1 ,

S>..S..*
..- ..

-13-

REFERENCES

[Andreae84]
P. M. Andreae, "Justified Generalization: Acquiring Procedures from Examples." Ph. D. Thesis.
Department of Electrical Engineering and Computer Science. MIT. Cambridge, MA. January
1984. (Also appears - Technical Report 834. MIT Al Laboratory.)

[DeJong86]
G. F. DeJong and R. J. Mooney. "Explanation-Based Learning: An Alternative View," Machine
Learning 1. 2 (April 1986), pp. 145-176. (Also appears as Technical Report UILU-ENG-86-
2208, AI Research Group. Coordinated Science Laboratory, University of Illinois at Urbana-
Champaign.)

[Dietterich86]
T. G. Dietterich and R. S. Michalski. "Learning to Predict Sequences." in Machine Learning: An

WO Artificial Intelligence Approach, Vol. II, R. S. Michalski. J. G. Carbonell and T. M. Mitchell
L (ed.). Morgan Kaufmann. Los Altos, CA. 1986. pp. 63-106.

[Fikes72]

R. E. Fikes. P. E. Hart and N. J. Nilsson. "Learning and Executing Generalized Robot Plans."
Artificial Intelligence 3. 4 (1972). pp. 251-288.

[Fisher8 7]
D. H. Fisher. "Knowledge Acquisition Via Incremental Conceptual Clustering," Ph.D. Thesis.
Department of Information and Computer Science. University of California. Irvine, Irvine.
California, 1987. (Also appears as Technical Report 87-22)

[Hayes-Roth78]
F. Hayes-Roth and J. McDermott, "An Interference Matching Technique for Inducing
Abstractions," Communications of the Association for Computing Machinery 21. 5 (1978). pp.
401-410.

~[Hoff 83]
W. A. Hoff, R. S. Michalski and R. E. Stepp. "INDUCE 3: A Program for Learning Structural

Descriptions from Examples," Technical Report UIUCDCS-F-83-904. Department of
Computer Science. University of Illinois. Urbana, IL. 1983.

[Holder88]

L. B. Holder "Discovering Substructure in Examples," M.S. Thesis, Department of Computer

Science, University of Illinois. Urbana, IL. 1988.

Piw[Langley86u

P. Langleyn J. M. Zytkow. H. A. Simon and G. L. Bradshaw, "The Search for Regularity: Four
Aspects of Scientific Discovery," in Machine Learning: An Artifcial Intelligence Approach,

Vol. II. R. S. Michalski, J. G. Carbonell and T. M. Mitchell (ed.). Morgan Kaufmann, Los
Altos, CA, 1986. pp. 425-469.

.Lebowitz86 z

M. Lebowitz, "Concept Learning in a Rich Input Domain: Generalization-Based Memory." in

I
-14-

Machine Learning: An Artificial Intelligence Approach, Vol. II. R. S. Michalski. J. G.

Carbonell and T. M. Mitchell (ed.), Morgan Kaufmann. Los Altos. CA. 1986. pp. 193-214.

[Minton85]
S. N. Minton. "Selectively Generalizing Plans for Problem-Solving," Proceedings of the Ninth

International Joint Conference on Artificial Intelligence, Los Angeles, CA, August 1985, pp.

596-599.

[Mitchell86]

T. M. Mitchell. R. Keller and S. Kedar-Cabelli. "Explanation-Based Generalization: A Unifying

View." Machine Learning 1. 1 (January 1986), pp. 47-80. 4-

[Mogensen87]
B. N. Mogensen. "Goal-Oriented Conceptual Clustering: The Classifying Attribute Approach."

M.S. Thesis. Department of Electrical and Computer Engineering, University of Illinois.

Urbana. IL. 1987. (Also appears as Technical Report UILU-ENG-87-2257)

[Restle70]
F. Restle. "Theory of Serial Pattern Learning: Structural Trees." Psychological Review 77, 6

(November 1970). pp. 481-495. 0
[Schank86]

'R. C. Schank. G. C. Collins and L. E. Hunter. "Transcending Inductive Category Formation in

Learning," Behavioral and Brain Sciences 9, 2 (1986). pp. 639-686.
[Shavlik87a]

J. W. Shavlik and G. F. DeJong, "BAGGER: An EBL System that Extends and Generalizes
Explanations." Proceedings of the National Conference on Artificial Intelligence. Seattle. WA.

July 1987. pp. 516-520. (Also appears as Technical Report UILU-ENG-87-2223. Al Research
Group. Coordinated Science Laboratory. University of Illinois at Urbana-Champaign.)

[Shavlik87b]

J. W. Shavlik and G. F. DeJong. "An Explanation-Based Approach to Generalizing Number."

Proceedings of the Tenth International Joint Conference on Artificial Intelligence. Milan. Italy.
August 1987, pp. 236-238. (Also appears as Technical Report UILU-ENG-87-2220. Al
Research Group. Coordinated Science Laboratory. University of Illinois at Urbana-

Champaign.) •

[Simon63]
H. A. Simon and K. Kotovsky. "Human Acquisition of Concepts for Sequential Patterns,"
Psychological Review 70. 6 (1963), pp. 534-546.

[Stepp84]
R. E. Stepp. "Conjunctive Conceptual Clustering: A Methodology and Experimentation," Ph.D.

Thesis. Department of Computer Science. University of Illinois at Urbana-Champaign. 1984.

[Stepp86]
R. E. Stepp and R. S. Michalski. "Conceptual Clustering: Inventing Goal-Oriented

Classifications of Structured Objects." in Machine Learning: An Artificial Intelligence

Approach. Vol. II. R S. Michalski, J. G. Carbonell and T. M. Mitchell (ed.). Morgan
Kaufmann. Los Altos, CA. 1986, pp. 471-498,

-15-

[Vere78I
S. A. Vere, "Inductive Learning of Relational Productions," in Pattern Directed Inference S
Systems, D. A. Waterman and F. Hayes-Roth (ed.). Academic Press. New York, 1978.

[Whitehall87]
B. L. Whitehall. "Substructure Discovery in Executed Action Sequences." M.S. Thesis.
Department of Computer Science. University of Illinois. Urbana, IL. 1987. (Also appears as
Technical Report UILU-ENG-87-2256)

[Winston84]

P. H. Winston, Artificial Intelligence (Second Edition), Addison-Wesley, Reading, MA. 1984.

[Wolff82]

J. G. Wolff, "Language Acquisition, Data Compression and Generalization." Language and
Communication 2. 1 (1982). pp. 57-89.

' N

S
S

